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Abstract 

A method to construct Pfaff Systems whose stability group contains a prescribed Lie group acting 
transitively is given. All of such Pfaff systems can be obtained by this method. © 1999 Elsevier 
Science B.V. All right reserved 

I. I n t r o d u c t i o n  

Let M be a differentiable manifold and o9 = {o91 . . . . .  ogr } a set composed by r differential 

1-forms on M. We assume that the dimension of the vector space generated by the values 

of the elements of to at any point is independent of that point. 

A diffeomorphism, ~0, defined in an open subset, U, of M is said to stabilize o9, if there 

exist functions ~oj ~ C a ( U )  such that 

j = l  

on U ,  f o r  a l l  i = 1 . . . . .  r .  

We denote by Est(og) the set composed by the global diffeomorphisms of M that stabilizes 

o9. Actually Est(og) is a group under composition of diffeomorphisms, which is called the 

stability group of o9. 

The stability group is not, in general, realizable as a (finite dimensional) Lie group acting 

on M. In some cases it reduces to the identity element, but in other cases it coincides with 

the whole diffeomorphism group. 
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Nevertheless, one can consider heuristically as its Lie algebra the set, est(og), composed 

by the vector fields whose flow is composed by diffeomorphisms that stabilizes 09. Thus 

est(og) is composed by the vector fields, X, on M such that 

r 

Lx 09i-- E og' 
j= l  

for all i = 1 . . . . .  r ,  where apj ~ C~(M). The set est(og) is easily seen to be a Lie algebra 

under ordinary Lie bracket, and is called the infinitesimal stability algebra of o9. 

There are two problems related to stability groups which are of some interest: 

(a) Given a Pfaff system to determine its stability group, its infinitesimal stability algebra 
and some of  its properties. One of  the properties to be studied is the existence of 

subgroups of  the stability group, which are realizable as Lie groups acting on M. This 

is a problem directly related to the search for finite dimensional Lie subalgebras of  

the infinitesimal stability algebra. For example, some properties of the infinitesimal 

stability algebra in the case of  a contact form have been studied in [12]. 

(b) Given a Lie group, G, to find a differentiable manifold, M, a Pfaff system on M, o9, and 

an action of G on M by elements of  the stability group of  o9. This is a classical way to 

realize a Lie group. For example, Cartan and Engel have represented the exceptional 

Lie groups in this way (cf. [2] (reprinted in [4, pp. 107-132]), [3] (reprinted in [4, pp. 

137-287]) and [9]). 

The present paper is related to problem (b). In fact we give all solutions corresponding to 

the case where the action is transitive, although this is not the case of  the cited examples of  

Cartan and Engel. 

Let us denote by Sp the vector subspace of  Tp M generated by the values at p E M of 

o91 . . . . .  ogr. These subspaces compose a vector subbundle of  T'M,  S. The fact that a Lie 

group, G, acts on M by elements of  Est(co) is equivalent to the fact that the canonical lift 

of  this action to T*M preserves S (under these circumstances we say that the action of  G 
stabilizes S). 

Conversely, let M be a homogeneous space of  G and S a vector subbundle T*M such 

that the action of  G stabilizes S. Let q9 be one of  the diffeomorphisms associated to elements 

of  G by the action and {o9~, . . . . .  ogr} be a local section of  the principal fibre bundle of  the 

basis of  S defined on an open subset of  M, Ua, a ----- 1, 2, such that ~O(Ul) ----- U2, then there 

exist functions ~o~i E C~(UI) such that 

r 

j= l  

for all i = 1 . . . . .  r. In this sense, the pair (M, S) is a "local" solution to our problem. The 
solutions to our problem corresponds in the strict sense to the case where this principal fibre 
bundle has a global cross-section, i.e. it is trivial. 

In Section 4, a method is given to construct local solutions in the aforementioned 
sense. 
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In Section 5, sufficient conditions are given for the existence of global sections of the 

principal fibre bundle of basis of the constructed vector bundle. 

The results obtained in Section 3, most of them valid in the non-transitive case, gives 

us motivation for the other sections and proves that the construction we made at Section 4 

gives all possible local solutions. 

Finally, let us say some words about the precedents of this paper. 
The subset of Est(w) composed by the elements, ~p, such that ~0"~o i = o9i for all i = 

1 . . . . .  r, compose a subgroup which we shall denote by Inv(w). 

The case where Inv(og) contains a transitive Lie subgroup has been studied in [7], where 

the following problem has been solved: if G is a Lie group, to find all homogeneous spaces 

of G, M, and Pfaff systems on M, o9, with vanishing characteristic system, such that the 

diffeomorphisms corresponding to the action are in Inv(og). These Pfaff systems give rise to 

principal fibre bundles with connection, whose structural group is abelian. Particular cases 

are the homogeneous contact manifolds, which have been studied in many papers. The 

most celebrated is perhaps that of Boothby and Wang [1] in which the authors prove that a 

simply connected compact homogeneous contact manifold is the total space of a principal 

circle bundle over a simply connected Hodge manifold, where the contact form defines a 

connection. They also prove that when a simply connected Hodge manifold is given, there 

exists a principal circle bundle on it whose total space is a regular contact compact manifold. 

These results were slightly improved in [8]. 

Generalization of these results to non-compact homogeneous contact manifolds and ways 

to explicitly construct the homogeneous contact manifolds and the corresponding principal 

bundles can be found in [5-7,14]. These fibre bundles with connection given by a contact 

form are the starting point of geometric quantization (Kirillov-Kostant-Souriau theory 

[11,13]). 

2. Notation 

General notations concerning differentiable manifolds, tensor fields and fibre bundles are 

as in [10], unless otherwise stated. 

If G is a Lie group, we denote by G the Lie algebra of left invariant vector fields on G 

and by G* the vector space of left invariant 1-forms on G. The identity element of G is 

denoted by e. 
Given X ~ G, we denote by Xd the fight invariant vector field whose value at e coincides 

with that of X. 
Let us assume that G acts on the left (resp. right) on a differentiable manifold, M. If 

g ~ G, we denote by gM the corresponding diffeomorphism of M. For all X 6 G we 
denote by XM the vector field on M whose flow is given by {Exp(--tX)M: t E R} (resp. 
{Exp(tX)M: t ~ •}). With this notation the map defined by sending each X ~ G_G_ to XM is 

a Lie algebra homomorphism. 

If y(t) is a curve in a manifold, we denote by ),it) its tangent vector at t = 0, unless 

otherwise stated. 
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3. Homogeneous Pfaff systems whose stability group contains a Lie subgroup 

In this paper we call Pfaff system of rank r each pair (p,)~), where p : S ~ M is a vector 

bundle of  rank r and L : S ~-~ T * M  is an injective homomorphism of vector bundles over 

the identity of  M. 

We identify S with )~(S) by means of ~. Thus a local cross-section of p can be considered 

as a 1-form on an open subset of  M. The map p becomes the restriction of  r* to S, where r * is 

the canonical map from T * M  onto M, and ~ becomes the canonical injection of S into T* M. 

Let ~o be a diffeomorphism of M. As usual, we denote by (~o -1 )* the diffeomorphism of 

T * M  given by 

((~p-1).a)(v) = ot(T~(x)~O - I  (v) ) 

for all x ~ M ,  ot ~ T* M and v ~ T~(x)M. 

We say that ~o stabilizes S if (~0-1)*(S) = S. 

The set composed by the diffeomorphisms of  M that stabilizes S is a group under the 

usual composition of  maps that is called the stability group of  S. 

We denote by B S ( M ,  G L ( r ,  ~)) the principal fibre bundle of  the basis of S. 
B S  is composed by (a I . . . . .  a r) such that the a i are linearly independent elements of  

some fibre of  p. If  U is an open set of  M and (DI . . . . .  (D r are differentiable sections of  p 

defined in U whose values at each point are linearly independent, then 

((D1 . . . . .  (Dr) : X E U ~ ( ( D I ( x )  . . . . .  (Dr(x)) 

is a differentiable section of  this principal fibre bundle, which is denoted by 

(U, ((D1 . . . . .  j ) ) .  

The bundle action of  G L ( r ,  ~ )  on the right on B S  is given by 

(ul . . . . .  u r ) ,  L = (E 1 . . . . .  /sr), 

where 

r 

j = l  

i = 1 . . . . .  r, L j being the element of  L in row j ,  column i (( j ,  i) entry). l 
The bundle projection is denoted by B p  : B S - - ~ M .  We have Bp(ot I . . . . .  ot r) = x if 

p(Ot i)  = X, i = 1 . . . . .  r. 

Let 9 be a diffeomorphism of M that stabilizes S. We define 

~BS  : ( Otl . . . . .  Ot r) 6 BS--~((cp-l)*~ l . . . . .  (~0-1)*ot r) 6 B S .  

qgBS is an automorphism of the principal fibre bundle B S ( M ;  G L ( r ,  R)), i.e. it is a diffeo- 
morphism of B S that commutes with the bundle action, 

The following lemma is more or less obvious and is equivalent to a result that has been 
used in Section 1. 
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L e m m a  3.1. Let  (p be a d i f feomorphism o f  M.  The fo l lowing  condit ions are equivalent:  

(i) ~o stabil izes S. 

(ii) For all  sect ions (Ua, (~Ola . . . . .  Of ) ) ,  a = 1, 2, such that (p(Uj) = U2, there exi,~t 

func t ions  ~ ~ C~(U2)  such that 

(~o-J )* ~°il = F)i co 2j 
j =  1 

f o r  all  i -~ 1 . . . . .  r. 

Let G be a Lie group acting on the left on M by diffeomorphisms that stabilizes S. 

These diffeomorphisms compose a subgroup of  the stability group that admits a Lie group 

structure: it is isomorphic to the quotient of G by the closed normal subgroup of G com- 

posed by the elements whose corresponding diffeomorphisms are the identity. Under these 

circumstances, we say that G is a stabili ty subgroup of S. If the action is transitive we say 

that G is a transit ive stabil i ty subgroup of S. 

The map defined by sending each g E G to the diffeomorphism (g~/)* of  T * M  is an 

action on the left and so is the map that associates to each g E G the restriction of  (g;41 )~ 

to S (differentiability of  the action follows from the fact that )~ is an embedding). In a 

similar way, the map defined by sending g 6 G to (gM)BS is an action on the left on 

BS .  In what follows, we denote (gM)BS simply by gBS and the restriction of  (g~l ) .  to S 

by gs.  

In B S  the canonical  1-form with values in W ,  f2, is defined by means of 

f2(~' ..... a l l"  v = (otl (T(~l ..... a , . )Bp,  v) . . . . .  od(T(~l ..... w ) B p .  v) ) 

for a l l (u l  . . . . .  d r) 6 B S ,  v ~ T¢~ ..... w ) B S .  

If (co J . . . . .  w r) is a differentiable cross-section of  Bp defined in an open subset, U, of 

M, we define differentiable functions in B p - I ( U ) ,  c01, by means of 

t" 

r j = oti E COl (Or I . . . . .  Ol )(,OBp(o:, ..... o~r) 
i - I  

for all (c~ I . . . . .  ot r) 6 Bp -1 (U) .  

Since the w~ (ce I . . . . .  c ( )  are the components of  the elements of a basis in another basis, 

the matrix whose entries are ~oj (~1 . . . . .  a")  is non-singular. In the next pages we will refer 

to this fact by saying that (coj) takes its values in G L ( r ,  ~) .  

L e m m a  3.2. In B p -  I (U)  we  have 

= (Bp)*o) j . . . . .  (Bp)*co j . 

j=l  
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Proof. Let (otl . . . . .  otr) E Bp  -1 (U) and v ~ T(~ ..... dr)BS.  Then, for all i = 1 . . . . .  r ,  we 

have 

(Bp )*m j v = OJ~. (o t  I r j • , . . . .  ot ) O ) B p ( d  1 ..... d,)(T(dl ..... u , )Bp  • v) 

(d  I . . . . .  d r  ) j = l  

= o t i ( T ( d l  . . . . .  d~)Bp . v )  

and the result follows. [] 

In the following we denote by 72J . . . . .  72r the components of  f2. 

Proposition 3.3. Let A be a diffeomorphism o f  M that stabilizes S. Then A *Bs72 = 72. 

Proof. If (otl . . . . .  otr) ~ B S  and v ~ T~dj ..... dr)BS we have 

• i i 
( A B s ~ ) ( a l  ..... dr) • V = ~ASS(Uj ..... ~r)(T(d~ ..... ar)ABS • V) 

__ 72i --  ((A l)*dl ..... (A-I)*ar)(T(dl ..... d ~ ) A B s ' V )  

= ( A - 1  * i ) ot (T~A ~)*d' ..... IA- ' )*d,)Bp°T~d~ ..... d~)ASS.V)  

= ((A-1)*oti(T(d, ..... dr)(A o B p ) .  v) =oti(T(u, ..... a~)Bp, v) 

= ~ i  
(otl . . . . .  d r  ) " V. [ ]  

Let A = (otl . . . . .  otr) ~ B S  and a = Bp(A) .  We denote by GA (resp. Ga) the isotropy 

subgroup at A (resp. a)  of  the action of  G on B S  (resp. M). 

I f  g ~ Ga, g s s ( A )  is also a basis of  the fibre of  S at a,  so that there exists an unique 

s(g) ~ GL(r;  •) such that gBs(A)  = A *s(g) .  As a consequence of  the fact that the action 

of  G commutes with the bundle action, one sees that the map s defined by sending g ~ Ga 

to s(g) is a representation of  Ga. GA is the kernel of this representation so that it is an 

invariant subgroup of Ga, and G a / G A  is isomorphic to s(Ga). 

Let a (resp. A) be the map from G onto M (resp. BS)  defined by sending g to gM(a) 

(resp. gss (A) ) .  
As a consequence of  Preposition 3.3 the 1-forms 72i are invariant under the action of  

G so that the forms A * ~  i are left invariant 1-forms on G. The,subset  of  G* composed 

by these 1-forms is denoted by Q. Now we introduce some notation concerning subsets 

of  G*. 

Let P be any subset of  G* and (P) the vector subspace it generates. We define: 

Gp = {g E G: Ad~ot = ot, ¥ot E P} 

Fp = {g ~ G: Ad~ot ~ (P) ,  ¥ot E P} 

G p = { X E G : i x d o t = O ,  'Cot 6 P }  

E_p = {X ~ G: ix  dot ~ (P),  ¥ot ~ P} 
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N p  = {X E Gp"  ix  ot = O, ¥ot ~ P} 

I-Ie = {X E F p :  ix  ot = O, ¥ot ~ P} 

We obviously have N p  C G e C F e and N p C H p  C F e. 

P ropos i t ion  3.4. The sets N p, H e ,  G p and F p are Lie subalgebras of  G, moreover; 

N e, H e a n d G  e are ideals ofF__p, N e is an ideal o f G p  andGp/N__ e is an abelian. The 

sets G e and Fp are closed subgroups o f  G whose Lie algebras are G__p and F__p. 

Proof .  Since N e , / 4  e ,  G e and F p  are vector subspaces of G ,  it suffices to prove that 

[ F p , F p ]  C F p ,  [ F  e , H e ]  C H e , and [ G p , F p ]  C N e. 

L e t f  E F p, g ~ G p and ot c P.  

For all/3 6 G*, X E Q we have Lx/3 = ix d/3. Then 

i[,e,f I dot = Llg,flot = LgL/ot  - L fLgot 

and this is the zero 1-form since L~, vanishes on the elements of (P) .  

Moreover, 

i[,~. t lot = Leifot - ifLgot 

vanishes since ifot is constant and Lgot = 0. 

This proves that [G__p, F p ]  C N p .  The proofs that t e e ,  F e ]  C F p  and [Ep ,  __Hp] C 

H e are similar. 

For each ot c P let us consider the isotropy subgroup at ot corresponding to the action 

of  G on G* defined by the coadjoint representation. Each one of  these subgroups of  G is 

closed and its intersection coincides with G p. It follows that G e is a closed subgroup. 

The subset F e  of  G is composed by the g such that Ad,~ invaries (P).  It is thus obvious 

that Fe is a subgroup of  G. The fact of  F e  being closed can be derived as follows. 

Let L = {otJ . . . . .  otr} be a maximal linearly independent subset of  P.  Then L is a basis 

of  (P) .  Complete L to a basis, B = {ott . . . . .  otr/3r+l . . . . .  /3"} of G*. Then F e  is composed 

by the g ~ G such that the entries (i, j )  of  the matrix of  Ad~, in the basis B are 0 whenever 

i = r + 1 . . . . .  n, j = 1 . . . . .  r. This proves that F e is dosed .  

Let us denote by (P )± ,  the subspace of G_G_ composed by the X such that ot(X) = 0 for 

all ot in (P) .  

The Lie algebra of  Fe,  Fe is composed by the X c G such that Exp tX E Fp, i.e. 

AdExptXot c (P) for all ot ~ (P) ,  t ~ ~. 

Thus X ~ F e  if and only if  for all ot c (P) and Y c ( P ) - ,  we have 

:¢ 
0 = AdExptXot(Y ) = ot(AdExp(-tx)(Y)) = o t (Exp(ad( - tX) ) (Y) )  = ec(e -t  adx (y)) .  

As a consequence, the elements of  Fp  are the X such that e - t  aOx stabilizes (P )± .  This 

condition is obviously equivalent to the fact that adx stabilizes (P )± .  

On the other hand, we have X ~ F e if and only if  

0 = ix dot(Y) = dot(X, Y) = c~([Y, X]) = -o t (adx (Y) )  
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for all a c (P)  and Y ~ (P )± .  Thus F p  is, like Fp, composed by the X such that adx 

stabilizes (P)  ±. 

To prove that the Lie algebra of  Gp is G p  one can use similar arguments, or proceed as 

follows. 

For all ce ~ G* and X ~ G we have Ad~xptXO¢ = (RExptX)*el ,  and since the flow of X 

i s  {RExptX: "t" E ~ } ,  it follows that 

d . d . 
R~xp t x L xot = -~  ( RExp t X ) ot---- --d--~AdExptXOt 

Since the Lie algebra of  G p  is composed by the X a G such that Ad~xptXOt = ot for all 

ot ~ (P) ,  t ~ g~, it follows from the preceding formula that it coincides with Gp. [] 

Now, we return to the consideration of  the set Q = {A* f2 J . . . . .  A* f2 r }. 

Let E : U---~ G be a local cross-section of  a defined in an open neighborhood of a. 

Lemma 3.5. We have 

Proof. First, notice that if  co = (col . . . . .  (+or) is a local cross-section of  Bp, we have 

CO*~2i ~--- coi 

for all i = 1 . . . . .  r.  In fact, for all p in the domain of  co and v ~ TpM we have 

i (co *s'2i)p • v = S'2w(p) (Tpco . v) = coi (p) (To~(p)Bp o Tpco . v) ---- coi (p )  . v. 

Thus, since A o E is a local cross-section of  Bp we have 

~]*A*~2  i = ( A  o ~])%~2 i = ( A  o ~])i 

and the result follows. [] 

Corollary 3.6. The subset Q of G* is linearly independent. 

Proof. Let k l . . . . .  ~-r ~ E be such that 

~-~)~(.4"f2 ~) = O. 

i=1 

Then 

0 = E* )~ i (A*~  i) = Z i ( E * A * ~ 2 i ) .  

\ i = 1  / i = l  

But, as a consequence of  Lemma 3.5, the ( E ' A *  ~'2 i )a are the elements of  the basis E o A(a )  
of  p -  l (a).  It follows that )~i = 0 for all i = 1 . . . . .  r .  [] 
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Since the ,¢ IS*A_* ~'~i.,a, ~ compose a basis of  p -~  (a), we can state for furore reference the 

fol lowing result. 

Corollary 3.7. We have 

p - I ( a )  = {(IS*a)a: a e (Q)}. 

Also we have the fol lowing proposit ion.  

Proposition 3.8. The isotropy subgroup at a, Ga, is a Lie subgroup of FQ whose Lie 
algebra is contained in HQ. The isotropy subgroup at A, GA, is a closed invariant Lie 

subgroup of Ga 71 G O whose Lie algebra is contained in NQ. 

Proof .  Let g ~ Ga,  Y 6 G and i ~ {1 . . . . .  r}. Then we have a o Rg = a__ and 

Ad~ (A* a i )  • Y = , , i RgA_ f2 • Y = ((_4 o Rg)*f2i)e • Ye 

f2tgas{A)(Ze(A o Rg) . Ye) 

= (gMI)*oti(TgBs(A)Bp o Te( A o Rg)" Ye) 
F 

= ~ s / ( g ) a J ( r ~ ( B p  o a_) o TeR~. Ye) 
j = l  

F r 

= 2 s / ( g ) a J ( T g a _ o  TeR~" Ye)= ~ s /(g)a;(T~(ao Rg).  Y,,) 
j = l  j=l  

r 

= Z s / ( g ) o t J ( T e a "  Ye) 
j=l 

where s/(g) is the ( j ,  i) entry of  s (g) .  

If we take g = e in this formula,  we obtain 

~ (Tea_. Ye) = A*~2 ~ ' Y, 

so that 

, * i E . . . .  Adx(A ~2 ) .  Y = s/ (g)A*f2 j • Y = s/ (g)A*f2 j • Y. 
j=l  

This proves that Ga C FQ. 
Now, we must  prove that A ' f 2  i • v = 0 for all i = 1 . . . . .  r, v E Ga. 
Let IS : U-+G be a local cross-section of  ag_, where U is an open neighborhood of a, 

and let h : U--+Ga be a C °o map such that h(a) = e. The map E '  : U--~G given by 

E'(u) = E (u) h(u) is also a section o f a .  As a consequence  of  L e m m a  3.5, 

((IS'*A*f21)a . . . . .  (E '*A*~2r)a)  =__A o E ' ( a )  

= A o  Is(a)  ( ( i s * A ' f 2 1 ) , ,  , , r . . . . .  (IS A ~ ) , )  
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Now, let y ( t )  be a differentiable curve in M such that g(0)  = a. Then we have 

: ( A * ~ i ) Z ' ( a ,  (~()/(t)j-h(y(t))) 

, i 
-= ( A  " ) E ( a ) ~ ~ ( Y ( / ) ) - t ' -  TegE(a, ( ~ ) )  

/ -_ 

-~. ( A * ~ ' ~ i ) Z ( a ) ( ~ )  "~ ((tE(a))*(A*~'2i))e ( ~ )  

= (~*A%"2i)a (y-~-~) -t-(h*A*~i)a ( y - ~ ) .  

It follows that (h*A*~i)a ( y - - ~ )  = 0, i.e. (h*A*f2i)a = 0. This relation, for h an 

A, f2  i arbitrary differentiable function with values in Ga such that h (a) = e, imply _ G,, = O, 

i.e. G_Aa C /4 0. 
We already know that GA is a closed invariant subgroup of  Ga. If  g ~ GA we have 

A o Rg A. Then A d g A * ~  i , , i A * ~ - 2 i  _ : _ : RgA_ ~ : so  that g E Gp.  Therefore, GA C 
G a A G p , and as a consequence, G A C H p A G p : N p . [] 

To end this section, let us assume that G is a transitive stability subgroup. As a conse- 

quence of  Proposition 3.8 and Corollary 3.7 we see that there exist a subset of G*, P ,  and 

a closed subgroup of  Fp  whose Lie algebra is in H e,  H,  such that 

• M is, up to an equivariant diffeomorphism, G / H .  

• The fibre of  S at p ~ G / H  is {(E*o-)p : o- ~ (P)}, where E is a local cross-section of  

the canonical map from G onto G / H ,  defined in a neighborhood of  p. 

In the next section, we prove that any pair (P,  H)  as above leads to a Pfaff system 

admitting G as a transitive stability subgroup. 

4. Construction of Pfaff systems with a given transitive stability subgroup 

Let G be a Lie group, P a subset of  G*, {o-l . . . . .  o "r } a maximal  linearly independent 

subset of  P and H a closed subgroup of  Fp whose Lie algebra, __H, is contained in H e.  We 

denote by ZrH : G-->G/H the canonical map. 

Let p ~ G / H  and E a local cross-section of  ZrH defined in a neighborhood of p.  Let us 

denote by Sp the set composed by the E 'o -  such that o- 6 (P) .  

Lemma 4.1. The set Sp does not depend on Z. 

Proof. Let E '  be another section of  JrH defined in a neighborhood of  p.  In the intersection 

of  the domains of  ~ and E ' ,  U, there exist a uniquely defined differentiable function with 

values in H ,  h, such that Er(q)  = I:(q)h(q)  for all q ~ U. 

We shall prove that 

(E'*o-)p = (E*(Ad*h(p)o-)) p (4.1) 

for all a E (P) .  
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This equation can be used to prove the lemma as follows. Since h(p) E H C Fp, 
Eq. (4.1) entails 

{(Z'*cr)p: cr ~ {P)} C {(E*a)p :  a ~ (P}}. 

One thus sees that the sets are equal by interchanging the roles of  E and E ' .  

In order to prove (4.1) we consider a differentiable curve in M, Y (t) such that y (0) = p. 

The following computations are more or less straightforward. 

= aE(I,)h(p ) (E(y(t))-h(y(t))) 

and (4.1) follows from the fact that h (y-'(t)) is tangent to H,  so that the corresponding left 

invariant vector field is in H and a vanishes on H.  [] 

L e m m a  4.2. We have dim Sp = r for all p E G / H. 

Proof .  Since {(E*cr I )p . . . . .  ( Z * o ' r ) p }  is a set of generators of Sp, it suffices to prove that 

they are linearly independent. 
Let )J . . . . .  ) r  6 R be such that y~r=l )~i(z*ffi)p = 0. Then Z*(y~r=j  )~icri)p = O, 

so that ~--~7=1 )~i6i vanishes on TpZ(Tp(G/H)). But the tangent space of  G at E ( p )  is a 

direct sum of  T l, E (Tp (G/H)) and the tangent space at E (p)  to the submanifold Z ( p ) H ,  

which is given by the values at Z (p)  of  the left invariant vector fields contained in H. Since 
r )~iffi r )icri~ ~.io'i 0,  SO 

( ~ i = l  ,,z<p> = = Y~i=l vanishes on H ,  it follows that 0. Then }-~.~= j 
that)~i = 0 ,  i =  1 . . . .  , r .  [] 

Let S = U p c G / H  Sp and let p be the restriction to S of  the canonical projection of 

T*(G/H) onto G/H. 
Each local cross-section, E : U---> G, of  Jr H,  gives rise to a set of  sections of  p, { E * cr 1 . . . . .  

E*o'r }, defined on U. Thus we define 

± kijZ . ( p ,  ( ) 1  . . . . .  ~r))  E U x ~r_._.> ~,i(~-~*Bri)p E p - l ( u ) .  

i=1 

There exists an unique topology and an unique differentiabte structure on S such that all 

the qJz are diffeomorphisms onto its image. When one considers on S this differentiable 

structure, p becomes a vector bundle, having the kOz as trivializations. 
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Now let us denote by L the canonical injection of S into T* (G/H).  Since each E*cr i is a 

differentiable section of  r * ,  it follows that L o qJ~ is differentiable so that Lip ~ )  is C ~ .  

Then L is C ~ and thus an injective homomorphism of  vector bundles. 

Finally, let us see that the diffeomorphisms of  G / H  associated to the canonical action 

stabilizes S. 

Let g E G, cr ~ (P) ,  (U, I : )  be a section of  Jr/4 and p ~ U. Then, we have 

(g~)H)*(E* a)p = ((E o gG)H)* Cr)g6/H(p) 
-1 , , -1 * 

: ( ( ~  o gG/H) Lgff)g6/n(P) : ( (Lg o ]~ o gG/H) a)gG/H(P)' 

and since Lg o I: o gG}H is also a section of  zrt/, it follows that 

--I * 
( (Lg o ~_, o gG/H) a)gC/H(P) 

is in S. 

5. Case where the Pfaff system is given by globally defined forms 

Let (p,  L) be a Pfaff system generated in the way explained in the preceding section, by 

a subset, P ,  of  G* and a closed subgroup, H ,  of  F p  whose Lie algebra, H ,  is contained in 

n p .  

This Pfaff system can be obtained from a set of  r globally defined 1-forms, as indicated in 

Section 1, if  and only if the principal fibre bundle of  the basis of  S admits a globally defined 

differentiable cross-section. In fact, if  (w 1 . . . . .  w r) is a global differentiable cross-section 

of  Bp,  for all g E G, the 1-form g~/H wi is a section of  p so that there exist differentiable 

functions, g i '  on G / H  such that 

* o)i ~ ' ~  • . gG/H = ~ g~ "°gJ 
j = l  

for all i = 1 . . . . .  r.  The converse is trivial. 

In what follows all cross-sections and functions are supposed to be differentiable unless 

otherwise stated. 

A sufficient condition for the existence of  a global cross-section of  Bp is the existence 

of  a global cross-section of  7rH. In fact, if E : G/H--->G is a global cross-section of ZrH, 

(E*~r j . . . . .  E*cr r) is a global cross-section of  Bp. In Proposition 5.2 we give a weaker 

sufficient condition. 

Let A ~ Bp-  1 (H). We have seen in Section 3 that the isotropy subgroup at A, GA, is 

a normal subgroup of  the isotropy subgroup at H,  H.  Hence (G/GA)(G/H,  H/GA) is a 

principal fibre bundle. The bundle projection is the map 

rCH : g GA E G/GA---->g H E G/H. 

In the same way as in Section 3, we define a representation, Sa, of H in GL(r, ~) by means 

of  h Bs (A) = A • SA (h) for all h 6 H and we see that G a is the kernel of  this representation. 
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Thus SA defines, in the well-known way, an injective homomorphism, s, from H~ GA into 

GL(r, ~). 

Let A be the canonical immersion 

A • g GA E G/GA--->gBs(A) E BS. 

L e m m a  5.1. The pair (A, s) is an injective homomorphism of principal fibre bundles. 

Proof.  We only need to prove thatA(gGA *hGA) = A(gGA) *s__(hGA) for all g 6 G, h E 

H,  w h e r e ,  means the action of  the corresponding structural group in each side. But we 

have 

A(g GA * h G A ) = A ( g h  GA) = (gh)Bs(A) = A * sa(gh)  

= (A * sa(g)) * sa(h) = (gBs(A)) * s(h GA) 

= A ( g  GA) * s(h GA). [] 

As a consequence, the existence of global sections of  zrn entails the existence of  global 

sections of  Bp. 

In Proposition 5.2 we use this fact to give a sufficient condition that can be stated 

directly in terms of  the given data P and H,  and needs no choice of a basis, A, in 

Bp - j  (H). 
There exists another representation of H in G L (r, •) associated to each maximal  linearly 

independent subset of  P.  In fact, if B ----- (or 1 . . . . .  cr r) is a maximal linearly independent 

subset of  P and h E H,  there exists (kB)~.(h) E ~ such that 

(kB)/ (h) ¢yJ Ad h* (¢ri) = 

j =  1 

for all i = 1 . . . . .  r.  Then, if we denote by kg (h) the matrix whose ( j ,  i) entry is (kg)[ (h), 

the map, kB, defined by sending h to kB (h) is a representation. 

P ropos i t ion  5.2. If  the canonical map from G/Ker kB onto G / H  has a global cross- 

section, then the Pfaff system determined by P and H can be given by globally defined 

1 -forms. 

Proof.  Let E : U--->G be a local cross-section ofrrH such that E ( H )  = e, where U is an 

open neighborhood of H,  and let B as above. Let us denote ((Z*cr 1 ) H . . . . .  (Z*c~ 1 ) n )  E 

Bp-J(H)  by A. 

We only need to prove that SA = kn. 
Let h ~ H.  The map Lh o E o hG} H is a section of~rH defined in hG/H(U ), which is an 

open neighborhood of  H.  Let U' = U • hG/H(U) and let f be the function with values in 

H such that X'  ---- E f (see the Proof of Lemma 4. I). We have 

f ( H )  = ]E(H) f(H)---- E ' ( H ) - - - - h  Z(h  I H ) = h  
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Thus formula  (4.1) tells us that 

(X '* f i i )H = (E*(Ad~(H) f i i ) )H  = (E  * (Adhfi. i ) )H 

and we  obtain 

-1 • • i (]~t*fii)H • • i (hG/H) ( ~  fi )H ~ (kB){ (z* f iJ)H.  =- = (2~ ( A d h f i ) ) H  ~ - "  (h) 
j : l  

Then  we  have 

- 1  * - 1  * * A * k B ( h )  = ((hG/l~) (E*  f i l ) n ,  h s s ( A )  . . . .  (hG/H) (X  f ir)H ) = 

so that sA(h)  = kg (h ) .  [] 

(5.1) 
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